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This research aims to find the numerical solution of  nonlinear composite fractional oscillation 
equation using Fractional Differential Transform Method (FDTM) and Variational Iteration 
Method (VIM). The numerical solutions demonstrate that the two approaches agree fairly 
well. As a result, these two approaches represent extremely strong and effective methods for 
resolving various types of  fractional differential equations, both linear and non-linear, that arise 
in numerous technological and engineering domains. We can conclude that both approaches 
are highly effective and potent in obtaining both numerical and analytical resolutions for a 
broad range of  FDEs. However, the FDTM solves nonlinear problem more closer to the exact 
solution, giving it an advantage over the VIM.
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1. Introduction
In applied mathematics, integrals and derivatives of  
random directives are treated using fractional calculus 
methods. Fractional calculus has been used in a wide range 
of  seemingly unrelated scientific and engineering domains 
over the past ten years. Equations in fluid dynamics, 
Sound and hearing, biology, electromagnetics, dispersion, 
signal handling, and many other physical mechanisms are 
increasingly being modeled using fractional differential 
equations (Podlubny, 1999).
These operations in calculus are extended to fractal 
orders in calculating fractions. Because fractional order 
operators are non-local and capture the dynamics’ history, 
Fractional Calculus has turned into a crucial element for 
the study of  dynamical systems.
It is possible to characterize the fluctuating systems of  
complicated entities non-local processes with storage 
using a fractional equations of  motion. The relationship 
between stochastic differential equation and nonlocal 
differential equations can be established using it.
It is discovered that fractional calculus is better suited 
for simulating processes using a long-term interaction as 
well as concrete issues expressed by fractal equations; yet, 
solving fractional differential equations can occasionally 
be challenging. 

Because of  this, we require a dependable and effective 
technique in resolving Differential calculus with fractions. 
A fractional time Klein-Gordon formula analytical 
research is provided by (Tamsir et al., 2010). Chen et al. 
(2017) analyze the fractional time Klein-Gordon formula 
applying the discrete technique. Researchers are less likely 
to offer an approximation of  the answer. We provide an 
analytical solution for the temporal fractional difference 
in this study.
The Riemann-Liouville fractal derivative, the Grünwald-
Letnikov fractal derivative, the Rietz fractal derivative, 
also many more variants exist. When it comes to genuine 
mathematics, the Riemann-Liouville integral is a little 
greater well-liked comparing the Caputo derivatives. The 
Riemann-Liouville derivatives require us that we define 
specify the numerical values of  a few fractional derivatives 
on the starting conditions for the unidentified answer, 
yet it was used by many earlier scholars in place of  the 
Caputo derivative. Nevertheless, the fractional derivative 
has little physical significance when we tackle the actual 
physical issue. Only the integer order derivative may be 
specified when working with the Caputo derivatives. It 
is measurable and has an obvious physical purpose. The 
fact that the equations containing the Riemann-Liouville 
operator are identical under homogeneous conditions is 
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another reason we use the Caputo derivative.
A substantial body of  literature has recently emerged 
on the use of  fractal differential equations in non-
linear mechanics (Gao & Yu, 2005; Lu & Chen, 2005, 
2006). Since there are rarely exact data-driven solutions 
for fractal differential equations, approximation also 
numerical approaches are required. Two relatively recent 
techniques for providing an data-driven estimation to 
linear and nonlinear problems are VIM (He, 1997, 1998a, 
1999, 2000,) and the Adomian decomposition method 
(Adomian, 1998). These techniques are especially useful 
as elements for researcher and applied scientists (Nomani 
& Al-Khaled, 2005).
Both of  them offer data driven estimations to take linear 
and non-linear difference equations the need for separate 
or regression, as well as instantaneous as well as obvious 
metaphorical expressions of  data-derived solutions. The 
two approaches are used in this study to find analytical 
approximation solutions to fractional-order linear 
differential equations. Afterwards, several examples are 
provided to illustrate an analysis based on numbers with 
the fractal difference. many different linear or non-linear 
difference equations have approximate solutions found in 
the publications thanks to the ADM method ( Shawagfeh 
& Kaya, 2004). The technique’s application to FDEs has 
been lately expanded (Nomani, 2005).
While the Laplacian transform technique can solve some 
constant coefficient fractional differential equations, it 
requires forcing terms, so it is not suited to all fractal 
inequality equations with coefficients that are fixed.
For the purpose of  finding the solitary solutions to 
non-linear difference equations, non-linear differential-
difference equations, and nonlinear fractal differential 
problems, a very thorough analysis of  research has been 
conducted recently (Tamsir and Srivastava, 2016). 

2. Methods
2.1. Non-Homogeneous Two Terms Fractional 
Differential Equations Involving Caputo Fractional 
Derivative:
Let us introduce a non-homogeneous fractional 
differential equation of  the form:

and
Then   

2.2. Non-Homogeneous Fractional Differential 
Equations Involving Caputo Fractional Derivative:
Now let’s introduce the following non-homogeneous 
fractional differential equation:

Using the Laplace Transform’s characteristics, we can get

Now, we have
α - β = 0 ⇒ α = β
λ = - λ
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The Caputo fractional derivative definition gives us

Then, we get

2.3. The Composite Fractional Relaxation Equation
The computation of  the solution of  the following linear 
FDEs examined in this paper:

.......(2.1)

subject to the initial conditions 
        uj (0)=cj,   j=0,1,....., m-1
Where, Cj, j=0,1,....., m-1are undefined parameters and 
u(t) is assumed to be a causal connection of  time, i.e., 
vanishing for t < 0. In the Caputo sense, fractional 
derivatives are taken into consideration. A parameter that 
describes the order of  the fractional derivative is present 
in the actual response expression, and it can be changed 
to produce different answers. In the cases where we refer 
to the composite fractional oscillation equation, we use 
Eq. (2.1) for the composite fractional relaxation. {0<α≤1, 
m=1} and {0<α≤2, m=2}, respectively.
The fractional derivative of  f(x) in the Caputo sense is 
defined as

For m-1<α≤m, m∈Ν, x>0, f∈Cm
-1

2.4. The Variational Iteration Method
 The basic concepts of  the VIM are explained in [He, 
1999a], along with information on how it can be applied 
to numerous types of  equations with differential 
coefficients. We examine the FDE that follows

where Dm
t=dm/(dtm) and the fractional differential 

operator D_(*t)^m is defined as in Eq. (2.2), subject to 
the initial conditions (2.1). The practical modification for 
Eq. (2.3) can be taken as

un+1(t) = un(t) + ∫0
tλ(Dt

mun(υ) - aDα
*tũn(υ) - bũn(υ) - f(υ))

dυ  … (2.4)
where k is a Lagrange multiplier, which can be found in 
the best possible way using variational theory. here ũnand 
Dα

*tũn are regarded as limited differences. We start with 
the first rough estimate.
u0 = c0 + c1t + c2t

2 + ... + cm-1t
m-1 ….........................… (2.5)

that the functional stationary ahead of, Observing δũn= 0,
δun+1(t) = δun(t) + δ∫0

tδ(Dt
mun(υ)-f(υ))dυ……………(2.6)

Results in the following Lagrange multipliers are as 
follows:
λ=-1 for m=1
λ=υ-t  for m=2 
Then, for m = 1, we have the following expand formula: 
un+1(t)= un(t)- ∫0

t(Dt
1un(υ) - aD*t

αun(υ) - bun(υ)-f(υ))d ...(2.7)
For m = 2, we obtain the following iteration formula:
un+1(t)=un(t)+∫0

t(υ-T)(Dt
2un(υ)-aD*t

αun(υ)-bun(υ)-f(υ))dυ  
                                                                 ...................(2.8)

2.5. Fractional differential transform method 
The idea of  variations can be broadened to non-integer 
orders in several ways. In the Riemann–Liouville logic, 
the fractional differentiation is described as 

for -1≤q<m, m∈Ζ+, x>x_0. The logical and ongoing 
function f(x) can be widened as follows through a fractal 
power series:
f(x) = ∑∞

l=0F(l)(x-x0)
l⁄α………………………….… (2.10)

where α is the non-integer order and F(l) is the fractal 
difference transform of  (x). Having the real-world 
applications that took place in numerous subsidiaries of  
science, the fractional starting conditions are not avails 
all the time, and it may not be known what their actual 
meaning is. Also, the solution in Eq. (2.9) should be 
changed to taking with non-fractional ordered starting 
conditions in Caputo sense (He, 1998) as follows:

                                                          …………….(2.11)
The modification of  the starting points is defined below 
since they are applied to the variations of  numerical order:

When  l=0,1,2,....,(nα-1)
where, n is the number of  FDE taken. Using Eqs. (2.1) 
and (2.2), the theorems of  FDTM, are presented next.

Theorem 1:
If   f(x)=(x-x0)

q, then F(l)=δ(l-αq) where, δ(l)= 
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Derivation:
For f(x), the statement that follows can be expressed with 
regard to of  the dirac-delta operates as

From the definition of  transform, following expression 
can be obtained:
F(l) = δ(l - αq)

Theorem 2:

Proof:
Through the use of  Eq. (2.11)The fractal decomposition 
of  g(x) in the Caputo sense can be expressed this way:

Making use of  Eqs. (2.10) aa well as (2.12), we get

beginning this series’ index from k = 0, we have

According to the parameters of  transformation in Eq. 
(2.10), The calculation that follows results in:

3. Results and Discussions
Here we look at a single instance to provide a clear 
overview of  the methodology as a numerical element. To 
make a computational instance, we utilize the VIM and 
FDTM on those instances.

Example:
Consider the composite fractional oscillation equation:
d2u/dt2-a(dαu/dtα)-bu=8,  t>0, 1<α≤2    …………..(3.1)
For the initial conditions:
u(0) = 0,.u’(0)=0    ..……………………………… (3.2)
In view of  (3.1), the calculation for repetitions for (2.8) 
is given by
un+1(t)=un(t)+∫0

t(υ-t)(D2un(υ)-aD*t
αun(υ)-bun(υ)-8)dυ ...(3.3)

Further, we look for the following assumptions:
u0(t)=0, u1(t)=4t2

and so forth. The remaining elements of  the reiteration 
calculation (3.4) can also be gathered in the same way.
Taking a=b=-1 and using theorems 1 and theorem 2, the 
formula ahead of  can be transferred as below

where β is the undefined fractal value. The terms in Eq. 
(3.1) can be transformed by using Eq. (2.12) as follows: 
U(l)=0  for l=0,1,.....,2β-1                             ………(3.6)
When used Eqs. (3.5) and (3.5), U(k) for k = 2β, 2β + 
1,...,n is computed and using the inverse transforming 
process in Eq. (3.2), u(t) is computed for different 
values of  α. chart 1 provides quantitative outcomes for 
comparison where the term “accurate solution”  refers 
to the closed form series solution given in (Hilfer, 2000). 
These findings show that FDTM can achieve six digits of  
accuracy by using N = 10 terms.
The accurate solution of  equation (3.13) is given by

Taking 10 terms after expanding, we get

After putting value α=1.5, we get the exact value.

Figure 1. 3-D and 2-D plot of  equation (3.7) when a= 
-1, b= -1 and α=1.5
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Figure 2. 3-D and 2-D plot of  equation (3.7) when a= -5, b= -7 and α=1.5

Figure 3. 3-D and 2-D plot of  equation (3.7) when a=3, b=-11 and α=1.5

Table 1. Comparison of  VIM and FDTM methods
α=1.5

t uFDTM uVIM uexact

0.0 0.00000000 0.00000000 0.00000000
0.1 0.03350759 0.03647845 0.03350723
0.2 0.12522237 0.14064078 0.12522196
0.3 0.26760933 0.30748531 0.26760904
0.4 0.45543589 0.53328417 0.45543567
0.5 0.68433621 0.81475709 0.68433583
0.6 0.95039364 1.14884054 0.95039339
0.7 1.24995953 1.53257119 1.24995924
0.8 1.57955733 1.96303357 1.57955709
0.9 1.93583279 2.43733178 1.93583254
1.0 2.31552656 2.95256745 2.31552608
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Figure 4. Graphical comparison shown of  table 1

Figure 5. Graphical diagram comparison shown of  table 1 

Figure 6. Graphical error comparison shown of  table 2

Table 2. Error analysis of  VIM and FDTM method 
t   Error uVIM Error uFDTM

0.0 0 0
0.1 -0.00297122 -3.6E-07
0.2 -0.01541882 -4.1E-07
0.3 -0.03987627 -2.9E-07
0.4 -0.0778485 -2.2E-07
0.5 -0.13042126 -3.8E-07
0.6 -0.19844715 -2.5E-07
0.7 -0.28261195 -2.9E-07
0.8 -0.38347648 -2.4E-07
0.9 -0.50149924 -2.5E-07
1.0 -0.63704137 -4.8E-07

from the number based results in chart 1 and 2 indicates 
the fact that the fractional differential transform method 
gives a highly accurate solution.

4. Conclusions
This paper presents the successful incorporation of  the 
Fractional Differential Transform Method (FDTN) and 
The Variational Iteration Method (VIM) for solving 
nonlinear composite fractional oscillation equation. In 
summary, the FDTN and the VIM could be viewed as 
a nice improvement over current numerical techniques 
and could have a wide range of  uses. The current 
analysis demonstrates how to solve fractional order linear 
difference equations using the VIM and the FDTM. When 
applied to actual physical problems, they offer faster-than-
realistic series solutions. Notably, the two approaches 
have the advantage that, in the nonlinear stochastic case, 
those do not require closest approximation, general 
assumptions, linearization, discretization, perturbation, 
or practically implausible assumptions.
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